oxidized to the parent cluster. The cluster acts as an electron storage site through the reversible breakage and formation of metal-metal bonds, although the cycle is not 100% efficient. In general, the electrochemical results indicate that the rearrangement of the Bi-Fe clusters is very rapid on the electrode surface.

Acknowledgment. The National Science Foundation (Grant CHE-8421217) and the Robert A. Welch Foundation are to be thanked for their financial support of this research. The highpressure equipment was purchased through a grant from the Atlantic Richfield Foundation, administered by the Research Corp.

**Registry No.** [Et<sub>4</sub>N]<sub>2</sub>[1], 101858-51-9; [Me<sub>4</sub>N]<sub>2</sub>[1]·[Me<sub>4</sub>N][Cl], 101834-85-9; [Et<sub>4</sub>N][2], 101997-75-5; [Et<sub>4</sub>N]<sub>3</sub>[Bi{Fe(CO)<sub>4</sub>}], 9276337-6; [Et<sub>4</sub>N]<sub>2</sub>[Bi<sub>4</sub>Fe<sub>4</sub>(CO)<sub>13</sub>], 94483-21-3; Fe(CO)<sub>5</sub>, 13463-40-6; Bi<sub>2</sub>-Fe<sub>3</sub>(CO)<sub>9</sub>, 96525-96-1; [Cu(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>], 15418-29-8; [Fe(CO)<sub>4</sub>]<sup>2-</sup>, 22321-35-3; [Co(CO)<sub>4</sub>]<sup>-</sup>, 14971-27-8; Co<sub>2</sub>(CO)<sub>8</sub>, 15226-74-1; [Et<sub>4</sub>N]-[BiFe<sub>3</sub>(CO)<sub>10</sub>], 92786-73-7; Cp<sub>2</sub>Co, 1277-43-6; [Cp<sub>2</sub>Co]<sub>2</sub>[Bi<sub>2</sub>Fe<sub>3</sub>(CO)<sub>9</sub>], 109243-26-7; (Bi<sub>2</sub>Fe<sub>3</sub>(CO)<sub>9</sub>)<sup>-</sup>, 109243-27-8; Bi, 7440-69-9; Co, 7440-48-4; Fe, 7439-89-6.

Supplementary Material Available: For [Me<sub>4</sub>N]<sub>2</sub>[1]·[Me<sub>4</sub>N][Cl] and [Et<sub>4</sub>N][2] listings of anisotropic thermal parameters, Figures 2 and 4 (stereoviews of the anions  $[1]^{2-}$  and  $[2]^{-}$ ), and tables of bond length and angle parameters for the cations of  $[Me_4N]_2[1] \cdot [Me_4N][Cl]$  and [Et<sub>4</sub>N][2] (5 pages); tables of calculated and observed structure factors for both compounds (43 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

# Cluster Syntheses. 14. The Syntheses and Structural Characterizations of the High-Nuclearity Sulfidoruthenium Carbonyl Cluster Compounds $Ru_5(CO)_{14}(\mu_4-S)_2$ , $Ru_6(CO)_{17}(\mu_4-S)_2$ , and $Ru_7(CO)_{20}(\mu_4-S)_2$

Richard D. Adams,\* James E. Babin, and Miklos Tasi

Received February 3, 1987

The reaction of  $Ru_3(CO)_9(\mu_3-S)_2$  (2) with  $Ru_3(CO)_{12}$  under UV irradiation has yielded the higher nuclearity cluster compounds  $Ru_4(CO)_9(\mu-CO)_2(\mu_4-S)_2$  (3), 38%,  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4), 20%, and  $Ru_6(CO)_{17}(\mu_4-S)_2$  (5), 3%. Thermal decarbonylation of  $Ru_3(CO)_9(\mu_3-CO)(\mu_3-S)$  (1) at 100 °C has yielded 3, 47%, 5, 10%, and  $Ru_7(CO)_{20}(\mu_4-S)_2$  (6), 26%. The large clusters are decomposed to 2 and 3 by reaction with CO at 1 atm. Compounds 4-6 have been characterized by single-crystal X-ray diffraction analyses. For 4: space group  $P2_1/n$ , a = 8.787 (2) Å, b = 14.550 (3) Å, c = 19.741 (3) Å,  $\beta = 98.09$  (1)°, Z = 4,  $\rho_{calcd} = 2.56$  $g/cm^3$ . The structure was solved by direct methods and was refined (3023 reflections) to the final residuals  $R_F = 0.033$  and  $R_{wF}$ = 0.036. The cluster consists of an approximately square arrangement of four ruthenium atoms with quadruply bridging sulfido ligands on each face. An Ru(CO)4 unit bridges one Ru-Ru edge of the cluster. By the EAN rule the molecule is unsaturated, and one of the Ru-Ru bonds was found to be unusually short, 2.704 (1) Å. For 5: space group  $P2_{12_{1}2_{1}}$ , a = 11.211 (2) Å, b = 14.666 (4) Å, c = 17.611 (4) Å, Z = 4,  $\rho_{calcd} = 2.63$  g/cm<sup>3</sup>. Compound 5 is isomorphous and isostructural with the known osmium homologue. The structure was refined (2482 reflections) to the final values of the residuals  $R_F = 0.033$  and  $R_{wF} = 0.039$ . The molecule consists of a pentagonal-bipyramidal cluster of five ruthenium atoms with two sulfido ligands. A Ru(CO)<sub>4</sub> group bridges one apical-equatorial edge of the cluster. For 6: space group  $P2_12_12_1$ , a = 11.226 (3) Å, b = 14.320 (4) Å, c = 21.217(5) Å, Z = 4,  $\rho_{calcd} = 2.59$  g/cm<sup>3</sup>. Compound 6 is isomorphous and isostructural with the known osmium homologue. The structure was refined (2296 reflections) to the final values of the residuals  $R_F = 0.041$  and  $R_{wF} = 0.044$ . The molecule consists of a pentagonal-bipyramidal cluster of five ruthenium atoms and two sulfido ligands. Two Ru(CO)<sub>4</sub> groups bridge symmetrically adjacent apical-equatorial edges of the cluster. The chemistry of the ruthenium clusters is compared to that of the corresponding osmium system.

### Introduction

A number of methods have now been developed for the systematic synthesis of transition-metal cluster compounds.<sup>1,2</sup> Bridging ligands have been shown to be especially useful by facilitating metal atom addition reactions and by stabilizing the products.<sup>1-4</sup> Bridging ligands appear to play an important role in the chemistry of high-nuclearity clusters of ruthenium.<sup>5</sup> No neutral binary carbonyls containing more than three ruthenium atoms are known.6

We have had considerable success in our efforts to prepare high-nuclearity cluster compounds of osmium containing sulfido ligands<sup>3</sup> and have now begun to apply this knowledge to the development of the chemistry of sulfidoruthenium carbonyl

(6) See ref 5, Chapter 32.2.1.4.

clusters. We have recently reported high-yield syntheses of the sulfidotriruthenium carbonyl clusters  $Ru_3(CO)_9(\mu_3-CO)(\mu_3-S)$  (1) and  $Ru_3(CO)_9(\mu_3-S)_2$  (2) from the reaction of  $Ru_3(CO)_{12}$  with ethylene sulfide.

## **Experimental Section**

General Information. Reagent grade solvents were stored over 4-Å molecular sieves. THF was freshly distilled from sodium diphenylketyl before use. Ru<sub>3</sub>(CO)<sub>12</sub> was purchased from Strem Chemical Co. and was used as received. Ethylene sulfide was purchased from Aldrich Chemical Co. and was distilled before use. CP grade carbon monoxide was purchased from Linde Co. and was used without further purification. Ru-(CO)<sub>5</sub> was prepared by the literature methods.<sup>8</sup>  $Ru_3(CO)_9(\mu_3$ -CO)( $\mu_3$ -S) (1), Ru<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -S)<sub>2</sub> (2), and Ru<sub>4</sub>(CO)<sub>9</sub>( $\mu$ -CO)<sub>2</sub>( $\mu_4$ -S)<sub>2</sub> (3) were prepared as previously reported.7

All reactions were performed under a nitrogen atmosphere. All chromatographic separations were performed in air. TLC separations were performed on plates (0.25-mm Kieselgel 60 F254, E. Merck) purchased from Bodman Chemicals. UV irradiation experiments were performed by using an external high-pressure mercury lamp on reaction solutions contained in Pyrex glassware. IR spectra were recorded on a Nicolet 5 DXB FT IR spectrometer. Elemental analyses were performed by MicAnal, Tucson, AZ.

<sup>(1)</sup> Geoffroy, G. L. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E., Eds., Pergamon: Oxford, England, 1982; Chapter 40.

<sup>(2)</sup> Geoffroy, G. L. In Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Elsevier: New York, 1986. Adams, R. D. Polyhedron 1985, 4, 2003. Vahrenkamp, V., Philos. Trans. R. Soc. London, A 1982, 308, 17.

Bruce, M. I. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, England, 1982; Chapter 32.6.

<sup>(7)</sup> Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1986, 25, 4514.
(8) Huq, R.; Poë, A. J.; Charola, S. Inorg. Chim. Acta 1980, 38, 121.

Reaction of  $Ru_3(CO)_9(\mu_3-S)_2$  (2) with  $Ru_3(CO)_{12}$ . A 31-mg (0.050mmol) sample of compound 2 and 32 mg (0.050 mmol) of Ru<sub>3</sub>(CO)<sub>12</sub> were dissolved in 70 mL of THF, and the solution was irradiated at 25 °C for 5 h under a continuous purge with  $N_2$ . The solution turned to dark green. The THF was removed in vacuo, and the residue was extracted with 150 mL of hexane. The gray-green hexane extract was concentrated and chromatographed on a short Florisil column with hexane solvent. The first yellow band was unreacted Ru<sub>3</sub>(CO)<sub>12</sub>, 9.7 mg (30%). The second band (dark green) that eluted with a hexane/ $CH_2Cl_2$ v/v 8/2 solvent mixture was a mixture of  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4) and  $Ru_6(CO)_{17}(\mu_4-S)_2$  (5). These were separated by fractional crystallization from a hexane solution at -20 °C. This yielded 9.4 mg (20%) of dark green 4 and 1.6 mg (3%) of brown 5. IR ( $\nu$ (CO), cm<sup>-1</sup>; in hexane) for 4: 2114 (w), 2075 (vs), 2049 (vs), 2032 (s), 2022 (s), 2007 (w), 1969 (m). Anal. Calcd for Ru<sub>5</sub>S<sub>2</sub>O<sub>14</sub>C<sub>14</sub>: C, 17.48. Found: C, 17.76. IR  $(\nu(CO), cm^{-1}; in hexane)$  for 5: 2113 (w), 2083 (vs), 2061 (vs), 2051 (s), 2046 (m, sh), 2029 (s), 2018 (w), 2009 (w), 1990 (vw), 1971 (vw), 1956 (w). Anal. Calcd for Ru<sub>6</sub>S<sub>2</sub>O<sub>17</sub>C<sub>17</sub>: C, 23.38. Found: C, 23.17. A dark orange residue that remained after the hexane extraction was further extracted with 50 mL of hot  $CH_2Cl_2$ . The solution was concentrated and cooled to -20 °C and yielded 14.7 mg of compound 3 (38%).

**Reaction of 3 with Ru\_3(CO)\_{12}.** A 40-mg (0.005-mmol) sample of compound 3 and 32 mg (0.05 mmol) of  $Ru_3(CO)_{12}$  were dissolved in 80 mL of THF, and the solution was irradiated (UV) at 25 °C for 6 h under a purge with N<sub>2</sub>. The color of the solution turned from orange to green. The workup described above resulted in 3.8 mg (8%) of compound 4, 1.6 mg (3%) of compound 5, and 28 mg (70%) of unreacted 3.

**Reaction of 4 with Ru(CO)**<sub>5</sub>. A 12-mg (0.0125-mmol) sample of compound 4 dissolved in 10 mL of cyclohexane was combined with a 50-mL solution of Ru(CO)<sub>5</sub> (0.073 mmol) in cyclohexane. This solution was irradiated (UV) for 10 h at 25 °C under a continuous purge with N<sub>2</sub>. The dark green solution turned brown. The solution was concentrated and chromatographed on a Florisil column with hexane solvent. The first yellow band yielded 11.9 mg of Ru<sub>3</sub>(CO)<sub>12</sub>. A brown band eluted with a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 1/1 solvent mixture. This was further purified by TLC using a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 85/15 solvent mixture to yield 3.4 mg (24%) of brown 5 and 1.0 mg (5%) of brown 6. IR ( $\nu$ (CO), cm<sup>-1</sup>; in hexane) for 6: 2119 (w), 2097 (m), 2074 (s), 2056 (vs), 2033 (m), 2027 (m), 2018 (w, sh), 2014 (m), 1991 (vw), 1963 (vw, sh), 1957 (w). Anal. Calcd for Ru<sub>7</sub>S<sub>2</sub>O<sub>20</sub>C<sub>20</sub>: C, 18.03. Found: C, 18.06.

Attempted Preparation of 6 from Compound 5. An 8-mg (0.007mmol) sample of 5 was dissolved in 10 mL of cyclohexane, and the mixture was combined with a 50-mL solution of  $Ru(CO)_5$  (0.073 mmol) in cyclohexane. The solution was irradiated for 12 h at 25 °C under a purge with nitrogen. Separation on silica gel TLC plates using a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 8/2 solvent mixture yielded 15.2 mg of  $Ru_3(CO)_{12}$  and 7.6 mg of unreacted 5.

Thermolysis of  $Ru_3(CO)_9(\mu_3-CO)(\mu_3-S)$  (1). (a) Under a CO Atmosphere. A 110-mg (0.18-mmol) sample of compound 1 was dissolved in 100 mL of heptane, and the solution was refluxed under a slow purge with carbon monoxide for 90 min. The yellow color of the solution turned brown. Approximately half of the solvent was removed in vacuo, and the solution was cooled to -20 °C. Orange crystals of 3 (16 mg, 23%) precipitated and were separated by filtration. The filtrate was chromatographed on a Florisil column with hexane eluent. This yielded a yellow band that was a mixture of compound 2 and  $Ru_3(CO)_{12}$ . These were separated by fractional crystallization from hexane solution. Yield: 17 mg of  $Ru_3(CO)_{12}$  and 35 mg (62%) of compound 2. By the use of a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 8/2 solvent mixture a brown band was eluted. Subsequent separation on TLC plates (hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 8/2) yielded 4 mg of compound 6 (5%) and another brown compound, 7 (3 mg), which has not been fully characterized yet. IR ( $\nu$ (CO), cm<sup>-1</sup>; in hexane): 2083 (vs), 2060 (w), 2041 (m), 2033 (vw), 2029 (vw).

(b) Under Vacuum. A 70-mg (0.114-mmol) sample of 1 was placed into a thick-walled glass tube equipped with a magnetic stirrer, 8 mL of heptane was added, and the tube was sealed under vacuum. The tube was placed into an oil bath, and the solution was stirred vigorously at 100 °C for 10 min. After the tube was removed and cooled to 25 °C, an orange precipitate formed. The tube was opened, the solution was decanted, and the precipitate was extracted with CH2Cl2 several times. The undissolved residue was pure 3, 21 mg (47%). The solutions were combined and evaporated to dryness. This residue was dissolved in hexane and was chromatographed on a Florisil column. With hexane eluent, a yellow band of 11 mg of  $Ru_3(CO)_{12}$  was separated. A gray band of a mixture of 5 and 7 was eluted with a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 9/1 solvent mixture, and a brown band, compound 6, was eluted with a hexane/ CH<sub>2</sub>Cl<sub>2</sub> v/v 7/3 solvent mixture (yield 14 mg, 26%). Separation of compounds 5 and 7 by TLC using a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 8/2 solvent mixture as eluent yielded 6.5 mg (10% of compound 5 and 2 mg of compound 7.

**Reaction of Ru<sub>4</sub>(CO)**<sub>9</sub>( $\mu$ -CO)<sub>2</sub>( $\mu$ <sub>4</sub>-S)<sub>2</sub> (3) with CO. A 20-mg (0.026-mmol) sample of 3 was dissolved in 40 mL of CH<sub>2</sub>Cl<sub>2</sub>, and the solution was slowly purged with CO for 20 min at 25 °C. The solution was concentrated in vacuo and was chromatographed on TLC plates with hexane solvent. This yielded 14.7 mg of 2, 92%.

**Reaction of Ru**<sub>5</sub>(CO)<sub>14</sub>( $\mu_4$ -S)<sub>2</sub> (4) with CO. A 10-mg (0.010-mmol) sample of compound 4 was dissolved in 20 mL of hexane. While the solution was vigorously stirred, CO was bubbled through it at 25 °C for 15 min. The green solution became red, and an orange precipitate formed. Filtration separated 6.1 mg (76%) of compound 3. The filtrate was evaporated to dryness in vacuo. The residue was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub>, and the solution was chromatographed by TLC using a hexane/CH<sub>2</sub>Cl<sub>2</sub> v/v 7/3 solvent mixture. This yielded a major red band (2.2 mg). IR ( $\nu$ (CO), cm<sup>-1</sup>; in hexane): 2099 (m), 2077 (m), 2065 (vs), 2046 (m), 2009 (m), 1997 (w), 1983 (vw). Efforts to crystallize this complex were unsuccessful because in solution it was slowly (6-8 h) transformed into 3.

**Reaction of Ru<sub>6</sub>(CO)**<sub>17</sub>( $\mu_4$ -S)<sub>2</sub> (5) with CO. An 11-mg (0.0096-mmol) sample of 5 was dissolved in 20 mL of heptane. The solution was heated to reflux (98 °C) for 40 min under a CO purge. The brown solution became orange. Workup as described above yielded 5.2 mg (88%) of compound 2 and 0.7 mg (10%) of compound 3. There was no evidence for the formation of 4.

**Reaction of Ru**<sub>7</sub>(CO)<sub>20</sub>( $\mu_4$ -S)<sub>2</sub> (6) with CO. The reaction of 10 mg (0.0075 mmol) of 6 with CO was performed as described in the previous section. No reaction occurred at 25 °C in 4 h, but at 98 °C 6 reacted completely in approximately 1 h. The usual workup yielded 3.5 mg of compound 2 (74%) and 0.7 mg of compound 3 (12%). There was no evidence for the formation of 4 or 5 under these conditions.

**Thermolysis of 5.** A 10-mg (0.009-mmol) sample of compound 5 was dissolved in 15 mL of heptane, and the solution was refluxed for 40 min under an  $N_2$  atmosphere. The brown solution became orange, and workup as described above yielded 6 mg of compound 3 (90%).

**Crystallographic Analyses.** Dark green crystals of 4 and black crystals of 6 were grown by slow evaporation of solvent from hexane solutions at -20 °C and from benzene solutions at 25 °C, respectively. Black crystals of 5 were grown from a hexane/CH<sub>2</sub>Cl<sub>2</sub> (9/1) solution at -20 °C. Data crystals were mounted in thin-walled glass capillaries. Diffraction measurements were made on a Rigaku AFC6 fully automated four-circle diffractometer using graphite-monochromatized Mo K $\alpha$  radiation. Unit cells were determined and refined from 25 randomly selected reflections by using the AFC6 automatic search, index, center, and least-squares routines. Crystal data, data collection parameters, and results of the analyses are listed in Table I. All data processing was performed on a Digital Equipment Corp. TEXSAN program library. Neutral-atom scattering factors were calculated by the standard procedures.<sup>96</sup> Anomalous dispersion corrections were applied to all atoms.<sup>90</sup> Full matrix least-squares refinements were minimized as indicated in Table I.

Compound 4 crystallized in the monoclinic crystal system. The space group  $P2_1/n$  was determined from the systematic absences observed in the data. The positions of the metal atoms were determined by direct methods (MULTAN). All remaining atoms were located by subsequent difference Fourier syntheses. All atoms were refined with anisotropic thermal parameters.

Compounds 5 and 6 crystallized in the orthorhombic crystal system. The space group  $P2_12_12_1$  was determined for both compounds by systematic absences observed in the data. Both compounds are isomorphous with the analogous osmium compounds, and structure solution for each was begun by placement of the metal and sulfur atoms at the same positions of the metal and sulfur atoms in the osmium clusters. All remaining atoms in these structures were determined by difference Fourier analyses. The data for compound 6 were corrected for the effects of absorption. Atoms larger than oxygen were refined with anisotropic thermal parameters. Attempts were made to determine the correct enantiomorph for both structures 5 and 6. For compound 5 refinement of each enantiomer yielded the residuals  $R_F = 0.0334$ ,  $R_{wF} = 0.0385$  and  $R_F = 0.0342$ ,  $R_{wF} = 0.0394$ . Although the results are not conclusive, the atomic coordinates for the enantiomer with the lower residuals were chosen to be correct (Table I). Similarly, refinement of both enantiomers of 6 yielded the residuals  $R_F = 0.0412$ ,  $R_{wF} = 0.0441$  and  $R_F = 0.0495$ ,  $R_{\rm wF} = 0.0506$ . In this case, the enantiomer with the lower residuals is surely the correct one. The fractional atomic coordinates for this enantiomer are reported. Error analyses were calculated from the inverse matrix obtained on the final cycle of refinement for each structure. See the supplementary material for the tables of structure factor amplitudes

<sup>(9)</sup> International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1975; Vol. IV: (a) Table 2.2B, pp 99-101; (b) Table 2.3.1, pp 149-150.

| Table I. | Crystallographic Data | for the Structural | Analyses of 4-6 |
|----------|-----------------------|--------------------|-----------------|
|----------|-----------------------|--------------------|-----------------|

|                                                      | 4                                      | 5                                                      | 6                                                      |
|------------------------------------------------------|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                                                      | (A) Crystal Data                       |                                                        |                                                        |
| formula                                              | $Ru_5S_2O_{14}C_{14}$                  | $Ru_6S_2O_{17}C_{17}$                                  | $Ru_7S_2O_{20}C_{20}$                                  |
| temp (±3), °C                                        | 27                                     | 23                                                     | 23                                                     |
| space group                                          | $P2_1/n$ , No. 14                      | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> , No. 19 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> , No. 19 |
| a, Å                                                 | 8.787 (2)                              | 11.211 (2)                                             | 11.226 (3)                                             |
| b, Å                                                 | 14.550 (3)                             | 14.666 (4)                                             | 14.320 (4)                                             |
| c, Å                                                 | 19.741 (3)                             | 17.611 (4)                                             | 21.217 (5)                                             |
| $\alpha$ , deg                                       | 90.0                                   | 90.0                                                   | 90.0                                                   |
| $\beta$ , deg                                        | 98.09 (1)                              | 90.0                                                   | 90.0                                                   |
| $\gamma$ , deg                                       | 90.0                                   | 90.0                                                   | 90.0                                                   |
| V, Å <sup>3</sup>                                    | 2498.7 (7)                             | 2895.4 (9)                                             | 3411 (1)                                               |
| М.                                                   | 961.6                                  | 1146.7                                                 | 1331.8                                                 |
| Z                                                    | 4                                      | 4                                                      | 4                                                      |
| $\rho_{\text{calcd}}, \text{g/cm}^3$                 | 2.56                                   | 2.63                                                   | 2.59                                                   |
|                                                      | (B) Measurement of Intens              | ity Data                                               |                                                        |
| radiation                                            | (B) Measurement of Intens              | $M_0 K_{\alpha} (0.710.73 \text{ Å})$                  |                                                        |
| monochromator                                        |                                        | graphite                                               |                                                        |
| detector aperture (mm): horiz: vert                  |                                        | 20.20                                                  |                                                        |
| activity for one                                     |                                        |                                                        |                                                        |
| ci yst faces                                         |                                        |                                                        | 110, 110, 110                                          |
|                                                      | $117$ $\overline{11}$ $1\overline{17}$ | 110, 110                                               | 012,012                                                |
|                                                      |                                        |                                                        | 012,012                                                |
| cryst size, mm                                       | $0.10 \times 0.12 \times 0.36$         | $0.40 \times 0.14 \times 0.15$                         | $0.09 \times 0.24 \times 0.224$                        |
| cryst orientation: direction; deg from $\phi$ axis   | [021]; 0.29                            | [011]; 0.28                                            | [010]; 0.74                                            |
| relicns measo                                        | $+n,+\kappa,\pm l$                     | +n,+k,+l                                               | $+n,+\kappa,+l$                                        |
| scan type                                            |                                        | moving cryst-stationary counter                        |                                                        |
| $\omega$ -scan whith: $(A + 0.34)$ tan $\theta$      |                                        | A = 1.1                                                |                                                        |
| bkgd (count time at each end of scan), s             |                                        | 9.0                                                    |                                                        |
| $\omega$ -scan rate, deg/min                         | 10.60                                  | 4                                                      |                                                        |
| no. of refichs measd                                 | 4962                                   | 2901                                                   | 3058                                                   |
| no. of data used $(F^2 \ge 3.0\sigma(F^2))$          | 3023                                   | 2482                                                   | 2296                                                   |
|                                                      | (C) Treatment of Da                    | ta                                                     |                                                        |
| abs cor                                              | not applied                            | not applied                                            | applied                                                |
| $coeff, cm^{-1}$                                     | 31.03                                  | 31.87                                                  | 31.37                                                  |
| grid                                                 |                                        |                                                        | 8 × 6 × 8                                              |
| transmission coeff: max; min                         |                                        |                                                        | 0.82; 0.75                                             |
| no. of variables (refined)                           | 316                                    | 209                                                    | 242                                                    |
| P factor                                             | 0.03                                   | 0.03                                                   | 0.03                                                   |
| final residuals: $B_{F}$ ; $R_{w}F$                  | 0.033; 0.036                           | 0.033; 0.039                                           | 0.041; 0.044                                           |
| esd of unit wt observn                               | 1.287                                  | 1.435                                                  | 1.344                                                  |
| largest shift/error value of final cycle             | 0.03                                   | 0.05                                                   | 0.03                                                   |
| largest peak in final diff Fourier, e/Å <sup>3</sup> | 0.78                                   | 0.77                                                   | 0.97                                                   |

<sup>a</sup> Rigaku software uses a multiple-scan technique. If the  $I/\sigma(I)$  ratio is less than 10.0, a second scan is made and the results are added to first scan, etc. A maximum of three scans was permitted per reflection.  $b \sum_{hkl} w(|F_o| - |F_c|)^2$  where  $w = 1/\sigma(F)^2$ ,  $\sigma(F) = \sigma(F_o^2)/2F$ , and  $\sigma(F_o^2) = [\sigma(I_{raw})^2 + (PF_o^2)^2]^{1/2}/Lp$ .

and the values of the anisotropic thermal parameters.

## Results

The reactions described in this report are summarized in Scheme I. The series of disulfido high-nuclearity clusters  $Ru_4(CO)_9(\mu-CO)_2(\mu_4-S)_2$  (3) (38%),  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4) (20%), and  $\operatorname{Ru}_6(\operatorname{CO})_{17}(\mu_4-S)_2$  (5) (3%) have been obtained from the reaction of  $Ru_3(CO)_9(\mu_3-S)_2(2)$  with  $Ru_3(CO)_{12}$ . Compound 3 was obtained in a much better yield (90%) from the reaction of 2 with  $Ru(CO)_5$  in the presence of UV irradiaton.<sup>7</sup> The bis-(dimethylphenylphosphine)-substituted derivative of 3 has been characterized crystallographically.7 Low solubility in hydrocarbon solvents prevented the study of the reaction of 3 with  $Ru(CO)_5$ and probably interfered with the reaction of 3 with  $Ru_3(CO)_{12}$ in THF. From the latter reaction low yields of 4 and 5 were obtained. The reaction of 4 with Ru(CO), under UV irradiation yielded 5 (24%) and a small amount of  $Ru_7(CO)_{20}(\mu_4-S)_2$  (6). Interestingly, 6 was not obtained from irradiated solutions of 5 and  $Ru(CO)_5$ . The best yield of 6 (26%) was obtained from the pyrolysis of 1 at 100 °C in an evacuated sealed tube. Significant amounts of 3 (47%), 5 (10%), and an unidentified compound 7 were also formed in this reaction.

Compounds 4-6 are broken down by reaction with CO. The major product of these reactions is 3, which precipitates from the solutions. In  $CH_2Cl_2$ , which is a better solvent, 3 reacts quickly with CO at 25 °C to yield 2.

Compounds 4-6 have been characterized by single-crystal X-ray diffraction analyses. These results are described below.



Figure 1. ORTEP diagram of  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4) showing 50% probability thermal ellipsoids.

Structure of  $\operatorname{Ru}_5(\operatorname{CO})_{14}(\mu_4 \cdot S)_2$  (4). An ORTEP diagram of the molecular structure of 4 is shown in Figure 1. Final positional parameters are listed in Table II. Intramolecular distances and bond angles are listed in Tables III and IV, respectively. The molecule consists of an approximately square cluster of four ruthenium atoms with quadruply bridging sulfido ligands positioned on each square face. An Ru(CO)<sub>4</sub> group bridges one edge of the

Scheme I



**Table II.** Positional Parameters and B(eq) for  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4)

| atom        | x              | у              | Z              | $B(eq), Å^2$ |
|-------------|----------------|----------------|----------------|--------------|
| Ru1         | 0.660 695 (75) | 0.264 299 (46) | 0.478 589 (31) | 4.1          |
| Ru2         | 0.733 097 (67) | 0.118 074 (43) | 0.400169 (29)  | 3.8          |
| Ru3         | 0.404 552 (81) | 0.299 067 (44) | 0.389335(35)   | 4.9          |
| Ru4         | 0.464 481 (71) | 0.154 184 (43) | 0.307 277 (31) | 3.7          |
| Ru5         | 0.664077 (81)  | 0.017753 (46)  | 0.283 663 (33) | 4.4          |
| <b>S</b> 1  | 0.474 90 (22)  | 0.14466(13)    | 0.433919 (97)  | 4.6          |
| S2          | 0.658 31 (24)  | 0.27265 (14)   | 0.353931 (95)  | 4.2          |
| <b>O</b> 11 | 0.5102(12)     | 0.293 86 (48)  | 0.604 35 (40)  | 13.2         |
| O12         | 0.9207 (11)    | 0.15662 (75)   | 0.559 23 (43)  | 12.3         |
| O13         | 0.8308 (11)    | 0.443 76 (63)  | 0.50266 (46)   | 9.4          |
| <b>O</b> 21 | 0.81015 (85)   | -0.05432 (53)  | 0.480 50 (39)  | 11. <b>9</b> |
| O22         | 1.060 66 (72)  | 0.13364 (57)   | 0.37711(35)    | 8.2          |
| <b>O</b> 31 | 0.4371 (15)    | 0.50438 (52)   | 0.383 45 (53)  | 15.8         |
| O32         | 0.153 28 (97)  | 0.314 86 (62)  | 0.47891 (45)   | 12.7         |
| O33         | 0.168 03 (95)  | 0.295 54 (54)  | 0.26092 (40)   | 8.8          |
| <b>O</b> 41 | 0.4340 (12)    | 0.18949 (54)   | 0.157 43 (35)  | 10.2         |
| O42         | 0.199 58 (84)  | 0.02518 (59)   | 0.27096 (46)   | 7.6          |
| <b>O</b> 51 | 0.4712 (11)    | -0.093 92 (52) | 0.37204 (40)   | 10.0         |
| O52         | 0.51124 (91)   | -0.058 73 (55) | 0.14763 (36)   | 6.8          |
| O53         | 0.93636(96)    | -0.11296 (61)  | 0.29766 (40)   | 9.5          |
| O54         | 0.8395 (10)    | 0.168 87 (63)  | 0.21810(39)    | 9.9          |
| C11         | 0.566 5 (13)   | 0.28290 (56)   | 0.55727(47)    | 7.0          |
| C12         | 0.8272 (13)    | 0.189 98 (82)  | 0.52272 (54)   | 7.5          |
| C13         | 0.7692 (12)    | 0.37618(76)    | 0.494 25 (48)  | 5.7          |
| C21         | 0.7802 (10)    | 0.00963 (65)   | 0.449 42 (43)  | 6.0          |
| C22         | 0.93514 (96)   | 0.12610 (65)   | 0.38575 (39)   | 5.1          |
| C31         | 0.4222(15)     | 0.428 50 (73)  | 0.38475 (56)   | 9.8          |
| C32         | 0.2457 (12)    | 0.309 98 (68)  | 0.44463 (54)   | 8.2          |
| C33         | 0.2669 (13)    | 0.284 33 (68)  | 0.304 34 (52)  | 7.0          |
| C41         | 0.4488 (12)    | 0.176 52 (59)  | 0.21503 (49)   | 5.7          |
| C42         | 0.303 3 (11)   | 0.073 84 (73)  | 0.28562 (50)   | 5.6          |
| C51         | 0.5434 (13)    | -0.053 28 (62) | 0.33896 (49)   | 6.0          |
| C52         | 0.5688 (11)    | -0.031 95 (65) | 0.197 79 (50)  | 5.9          |
| C53         | 0.8325 (13)    | -0.064 88 (73) | 0.291 25 (50)  | 6.3          |
| C54         | 0.7753 (12)    | 0.113 38 (79)  | 0.243 55 (46)  | 6.4          |

**Table III.** Intramolecular Distances (Å) for  $Ru_5(CO)_{14}(\mu_4-S)_2$  (4)

| 1 40 | ie III. Intramo | iccular Distallees ( | $\mathbf{R}$ ) for $\mathbf{Rus}(\mathbf{CO})$ | $4(\mu_4 - 3)_2 (-)$ |
|------|-----------------|----------------------|------------------------------------------------|----------------------|
|      | Ru1-C11         | 1.88 (1)             | Ru4-S1                                         | 2.493 (2)            |
|      | Rul-C13         | 1.89 (1)             | Ru4–S2                                         | 2.506 (2)            |
|      | Ru1-C12         | 1.93 (1)             | Ru4-Ru5                                        | 2.732 (1)            |
|      | Ru1-S2          | 2.461 (2)            | Ru5–C53                                        | 1.90 (1)             |
|      | Ru1-S1          | 2.463 (2)            | Ru5-C52                                        | 1.92 (1)             |
|      | Ru1–Ru3         | 2.704 (1)            | Ru5-C51                                        | 1.93 (1)             |
|      | Ru1-Ru2         | 2.758 (1)            | Ru5-C54                                        | 1.93 (1)             |
|      | Ru2-C22         | 1.841 (8)            | O11-C11                                        | 1.12(1)              |
|      | Ru2-C21         | 1.87 (1)             | O12-C12                                        | 1.12 (1)             |
|      | Ru2-S2          | 2.481 (2)            | O13-C13                                        | 1.12(1)              |
|      | Ru2-S1          | 2.483 (2)            | O21-C21                                        | 1.13 (1)             |
|      | Ru2–Ru5         | 2.7195 (9)           | O22-C22                                        | 1.145 (9)            |
|      | Ru2–Ru4         | 2.827 (1)            | O31-C31                                        | 1.11 (1)             |
|      | Ru3-C31         | 1.89 (1)             | O32-C32                                        | 1.13 (1)             |
|      | Ru3-C32         | 1.90 (1)             | O33-C33                                        | 1.14 (1)             |
|      | Ru3–C33         | 1.94 (1)             | O41-C41                                        | 1.14 (1)             |
|      | Ru3–S2          | 2.459 (2)            | O42-C42                                        | 1.16 (1)             |
|      | Ru3-S1          | 2.460 (2)            | O51-C51                                        | 1.14 (1)             |
|      | Ru3–Ru4         | 2.754 (1)            | O52-C52                                        | 1.12 (1)             |
|      | Ru4–C41         | 1.84 (1)             | O53-C53                                        | 1.14 (1)             |
|      | Ru4–C42         | 1.84 (1)             | O54-C54                                        | 1.14 (1)             |
|      | Ru2C12          | 2.66 (1)             | Ru4…C33                                        | 2.56 (1)             |
|      |                 |                      |                                                |                      |

| Table IV.    | Selected                  | Intramolecular | Bond | Angles | (deg) | for |
|--------------|---------------------------|----------------|------|--------|-------|-----|
| $Ru_5(CO)_1$ | $_{4}(\mu_{4}-S)_{2}$ (4) | 4)             |      |        |       |     |

| _ |             |            |                    |            |
|---|-------------|------------|--------------------|------------|
|   | C11-Ru1-Ru3 | 95.1 (3)   | S1-Ru4-Ru3         | 55.65 (5)  |
|   | C11-Ru1-Ru2 | 137.6 (3)  | S1-Ru4-Ru2         | 55.22 (5)  |
|   | C13-Ru1-Ru3 | 107.5 (3)  | S2-Ru4-Ru5         | 98.23 (6)  |
|   | C13-Ru1-Ru2 | 127.3 (3)  | S2-Ru4-Ru3         | 55.50 (5)  |
|   | C12-Ru1-Ru3 | 155.4 (3)  | S2-Ru4-Ru2         | 55.05 (5)  |
|   | C12-Ru1-Ru2 | 66.4 (3)   | Ru5-Ru4-Ru3        | 146.82 (3) |
|   | S2-Ru1-Ru3  | 56.63 (5)  | Ru5-Ru4-Ru2        | 58.55 (2)  |
|   | S2-Ru1-Ru2  | 56.42 (5)  | Ru3-Ru4-Ru2        | 88.40 (3)  |
|   | S1-Ru1-Ru3  | 56.63 (5)  | C53-Ru5-Ru2        | 101.2 (3)  |
|   | S1-Ru1-Ru2  | 56.46 (5)  | C53-Ru5-Ru4        | 163.7 (3)  |
|   | Ru3-Ru1-Ru2 | 90.87 (3)  | C52-Ru5-Ru2        | 164.8 (3)  |
|   | C22-Ru2-Ru5 | 90.5 (2)   | C52-Ru5-Ru4        | 102.3 (3)  |
|   | C22-Ru2-Ru1 | 110.0 (3)  | C51-Ru5-Ru2        | 83.3 (3)   |
|   | C22-Ru2-Ru4 | 128.6 (3)  | C51-Ru5-Ru4        | 82.8 (3)   |
|   | C21-Ru2-Ru5 | 89.6 (3)   | C54-Ru5-Ru2        | 84.0 (3)   |
|   | C21-Ru2-Ru1 | 114.3 (3)  | C54-Ru5-Ru4        | 85.5 (3)   |
|   | C21-Ru2-Ru4 | 126.7 (3)  | Ru2–Ru5–Ru4        | 62.47 (2)  |
|   | S2-Ru2-Ru5  | 99.18 (5)  | Ru3-S1-Ru1         | 66.62 (6)  |
|   | S2-Ru2-Ru1  | 55.74 (5)  | Ru3-S1-Ru2         | 103.85 (7) |
|   | S2-Ru2-Ru4  | 55.88 (5)  | Ru3-S1-Ru4         | 67.57 (5)  |
|   | S1-Ru2-Ru5  | 101.96 (5) | Ru1-S1-Ru2         | 67.77 (5)  |
|   | S1-Ru2-Ru1  | 55.77 (5)  | Ru1-S1-Ru4         | 104.40 (7) |
|   | S1-Ru2-Ru4  | 55.54 (5)  | Ru2-S1-Ru4         | 69.24 (5)  |
|   | Ru5-Ru2-Ru1 | 147.91 (3) | <b>Ru3-S2-Ru</b> 1 | 66.66 (6)  |
|   | Ru5-Ru2-Ru4 | 58.98 (2)  | Ru3-S2-Ru2         | 103.94 (7) |
|   | Ru1-Ru2-Ru4 | 89.04 (3)  | Ru3-S2-Ru4         | 67.38 (6)  |
|   | C31-Ru3-Ru1 | 98.7 (4)   | Ru1-S2-Ru2         | 67.84 (5)  |
|   | C31-Ru3-Ru4 | 135.2 (3)  | Ru1-S2-Ru4         | 104.08 (7) |
|   | C32-Ru3-Ru1 | 104.7 (3)  | Ru2-S2-Ru4         | 69.07 (6)  |
|   | C32–Ru3–Ru4 | 128.3 (3)  | 011-C11-Ru1        | 180 (1)    |
|   | C33-Ru3-Ru1 | 154.8 (3)  | O12C12-Ru1         | 167 (1)    |
|   | C33-Ru3-Ru4 | 63.5 (3)   | O13-C13-Ru1        | 178 (1)    |
|   | S2-Ru3-Ru1  | 56.70 (5)  | O21-C21-Ru2        | 178.2 (9)  |
|   | S2-Ru3-Ru4  | 57.12 (5)  | O22-C22-Ru2        | 178.1 (9)  |
|   | S1-Ru3-Ru1  | 56.75 (5)  | O31-C31-Ru3        | 178 (1)    |
|   | S1-Ru3-Ru4  | 56.78 (5)  | O32-C32-Ru3        | 178 (1)    |
|   | Ru1-Ru3-Ru4 | 91.69 (3)  | O33–C33–Ru3        | 161.8 (9)  |
|   | C41-Ru4-Ru5 | 85.4 (3)   | O41-C41-Ru4        | 178 (1)    |
|   | C41-Ru4-Ru3 | 117.0 (3)  | O42-C42-Ru4        | 178 (1)    |
|   | C41–Ru4–Ru2 | 128.0 (3)  | O51-C51-Ru5        | 179 (1)    |
|   | C42-Ru4-Ru5 | 89.5 (3)   | O52-C52-Ru5        | 178 (1)    |
|   | C42-Ru4-Ru3 | 114.7 (3)  | O53-C53-Ru5        | 177.7 (9)  |
|   | C42-Ru4-Ru2 | 125.3 (3)  | O54–C54–Ru5        | 178.1 (9)  |
|   | S1-Ru4-Ru5  | 101.36 (5) |                    |            |

cluster. The metal-metal bonds within the cluster vary considerably. The Ru1-Ru3 distance is unusually short, 2.704 (1) Å. The Ru1-Ru2 and Ru3-Ru4 distances, 2.758 (1) and 2.754 (1) Å, are equal and intermediate in length. The longest bond is Ru2-Ru4, 2.827 (1) Å. The bonds to the edge-bridging Ru(CO)<sub>4</sub> group are approximately equal, 2.7195 (9) and 2.732 (1) Å. Although of varying degree, all the Ru-Ru bonds in 4 are shorter

than those in  $Ru_3(CO)_{12}$ , 2.852–2.859 Å.<sup>10</sup> The shape of the cluster of 4 is very similar to that of the bis(dimethylphenylphosphine) derivative of 3,  $Ru_4(CO)_7(\mu$ -CO)\_2(PMe<sub>2</sub>Ph)\_2( $\mu_4$ -S)<sub>2</sub>.<sup>7</sup> The metal-sulfur bonds can be divided into two inequivalent sets.

<sup>(10)</sup> Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655.



Figure 2. ORTEP diagram of  $\text{Ru}_6(\text{CO})_{17}(\mu_4\text{-}\text{S})_2$  (5) showing 50% probability thermal ellipsoids.

The Ru1–S and Ru3–S distances, 2.459 (2)–2.463 (2) Å, are all shorter than those to Ru2 and Ru4, 2.481 (2)–2.506 (2) Å. Compound **4** has 14 carbonyl ligands. All are of a terminal type, except C12–O12 and C33–O33. These two ligands have semibridging coordination and occupy opposite edges of the cluster, Ru2···C12 = 2.66 (2) Å and Ru4···C33 = 2.56 (2) Å. Overall, the molecule has approximately  $C_{2v}$  symmetry. No symmetry is crystallographically imposed.

If one assumes that the sulfido ligands are four-electron donors, then according to the effective atomic number (EAN) rule compound 5 is unsaturated by the amount of two electrons. Such unsaturation could manifest itself in the form of localized multiple bonding, as has been suggested for some structurally similar cluster compounds.<sup>11</sup> Curiously, a simple count of the electron configurations shows that it is the metal atoms Ru2 and Ru4 that formally have the 17-electron configurations, and thus multiple bonding would be expected between these atoms. Surprisingly, the Ru2-Ru4 bond is the longest in the molecule while Ru1-Ru3 is the shortest. This anomaly can be rationalized in the following way. If the Ru1-Ru2 and Ru3-Ru4 bonds are of a donor-acceptor type,  $Ru1 \rightarrow Ru2$  and  $Ru3 \rightarrow Ru4$ , then the atoms Ru2 and Ru4 have 18-electron configurations, and Ru1 and Ru3 have 17-electron configurations. The multiple bonding could then occur across the Ru1-Ru3 bond, as in A. The formulation of Ru1-Ru2



and Ru3-Ru4 as donor-acceptor bonds is consistent with one of Cotton's premises concerning the formation of semibridging ligands, as observed in  $5.^{12}$  The total electron count in 5 is 80 electrons. This is the exact number predicted by the well-known delocalized bonding theories.<sup>13</sup>

Structure of  $\operatorname{Ru}_6(\operatorname{CO})_{17}(\mu_4$ -S)<sub>2</sub> (5). An ORTEP diagram of the molecular structure of 5 is shown in Figure 2. Final positional

**Table V.** Positional Parameters and B(eq) for  $Ru_6(CO)_{17}(\mu_4-S)_2$  (5)

|             |                |                                                                                    |                             | 2 (-)                    |
|-------------|----------------|------------------------------------------------------------------------------------|-----------------------------|--------------------------|
| atom        | x              | v                                                                                  | 2                           | B(eq),<br>Å <sup>2</sup> |
|             | 0 733 500 (9   | 0) 0 420 242 ((0)                                                                  | 0 105 (71 (52)              | 2.4                      |
| RUI<br>D2   | -0.722 389 (8  | $\begin{array}{cccc} 0 & -0.429243 & (60) \\ 6 & 0.580024 & (62) \end{array}$      | -0.193071(33)               | 2.4                      |
| Ru2         | -0.746 565 (8  | $\begin{array}{c} 0 \\ -0.389024 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | -0.098249(30)               | 2.0                      |
| Ru3         | -0.546621 (8   | $\begin{array}{c} 6) & -0.562078(67) \\ 0.365078(67) \end{array}$                  | -0.184 665 (60)             | 2.1                      |
| Ru4         | -0.873 513 (9  | 0) = -0.3058/9(6/)                                                                 | -0.10/0/3 (61)              | 2.8                      |
| Ru5         | -0.975686 (8   | 9) -0.403622 (68)                                                                  | -0.228 342 (56)             | 2.7                      |
| Ru6         | -0.963611 (8   | 7) -0.490874 (70)                                                                  | -0.077897 (56)              | 2.8                      |
| <b>S</b> 1  | -0.87907 (27   | ) -0.546 22 (19)                                                                   | -0.199 84 (17)              | 2.5                      |
| S2          | -0.759 96 (27  | ) -0.43222 (21)                                                                    | -0.057 23 (17)              | 2.7                      |
| <b>O</b> 11 | -0.5224 (11)   | -0.294 25 (78)                                                                     | ~0.18367 (65)               | 6.0                      |
| O12         | -0.69403 (98   | ) -0.43219 (76)                                                                    | -0.36508 (60)               | 5.3                      |
| O21         | -0.7634(11)    | -0.78812 (82)                                                                      | 0.139 21 (63)               | 6.1                      |
| O22         | -0.5940 (10)   | -0.636 26 (78)                                                                     | 0.036 31 (66)               | 5.7                      |
| 031         | -0.4488 (10)   | -0.45507 (78)                                                                      | -0.045 97 (64)              | 5.7                      |
| 032         | -0.3710(10)    | -0.47428(75)                                                                       | ~0.294 59 (62)              | 5.5                      |
| 033         | -0.677.02(93)  | $\sim 0.652.49(70)$                                                                | -0.31853(61)                | 4.8                      |
| 034         | -0.388.2(11)   | -0.72645(80)                                                                       | -0.149.81(64)               | 6.0                      |
| 041         | -0.3662(11)    | 0.720 45 (00)                                                                      | 0.14901(04)<br>0.03630(75)  | 75                       |
| 041         | ~0.7930 (12)   | -0.20878(93)                                                                       | 0.03039(73)<br>0.10542(71)  | 47                       |
| 042         | ~1.0929 (11)   | -0.18070(87)                                                                       | ~0.10342 (71)               | 0.7                      |
| 043         | -0.7525 (10)   | -0.164 02 (83)                                                                     | -0.20217(66)                | 0.1                      |
| 051         | -1.0/03 (11)   | -0.50865 (85)                                                                      | -0.36441 (66)               | 6.3                      |
| 052         | -1.2253(10)    | -0.34573 (80)                                                                      | -0.19171 (65)               | 5.8                      |
| O53         | -0.9287 (10)   | -0.236 56 (81)                                                                     | -0.32203 (69)               | 6.1                      |
| O61         | -1.0548 (12)   | -0.395 57 (92)                                                                     | 0.062 99 (75)               | 7.2                      |
| O62         | -1.2114 (12)   | -0.55374 (88)                                                                      | -0.117 49 (71)              | 6.8                      |
| O63         | -0.9608 (11)   | ~0.66863(78)                                                                       | 0.01147 (65)                | 5.8                      |
| C11         | -0.6003 (12)   | -0.34561 (91)                                                                      | -0.18794 (78)               | 3.5                      |
| C12         | -0.7062 (12)   | -0.43025 (91)                                                                      | -0.300 37 (75)              | 3.6                      |
| C21         | -0.7514 (14)   | -0.7098 (10)                                                                       | -0.124 23 (82)              | 4.5                      |
| C22         | -0.6528(12)    | -0.61967 (90)                                                                      | -0.01492 (78)               | 3.6                      |
| C31         | -0.4867(12)    | -0.49263 (97)                                                                      | -0.098 29 (83)              | 3.9                      |
| C32         | -0.4361 (13)   | -0.509.5 (10)                                                                      | -0.25325(81)                | 4.3                      |
| C33         | -0.6315(11)    | -0.62013(84)                                                                       | -0.26823(72)                | 3.2                      |
| C34         | -0.4510(13)    | -0.664.51(94)                                                                      | -0.161.59(74)               | 37                       |
| C41         | -0.8264(14)    | -0.2479(11)                                                                        | -0.01633(87)                | 4.6                      |
| C41         | -0.8204(14)    | -0.2479(11)                                                                        | -0.010 33 (87)              | 4.0                      |
| C42         | -1.0099(13)    | -0.23329(93)                                                                       | -0.10982(83)                | 4.0                      |
| C43         | -0.7967 (14)   | -0.2216 (10)                                                                       | -0.10390(82)                | 4.2                      |
| 051         | ~1.0369 (13)   | -0.469 94 (96)                                                                     | -0.31338 (83)               | 4.0                      |
| C52         | -1.1304 (14)   | -0.36//(10)                                                                        | -0.204 84 (88)              | 4.5                      |
| C53         | -0.944 2 (12)  | -0.30043 (96)                                                                      | -0.28617 (74)               | 3.7                      |
| C61         | ~1.0199 (14)   | -0.4316 (11)                                                                       | 0.007 98 (93)               | 4.9                      |
| C62         | ~1.117 2 (14)  | -0.5280 (10)                                                                       | -0.10289 (91)               | 4.5                      |
| C63         | -0.9338 (13)   | -0.6093 (10)                                                                       | -0.02446 (81)               | 4.1                      |
|             |                |                                                                                    |                             |                          |
| Table VI    | I. Intramolecu | ılar Distances (Å) f                                                               | For $Ru_6(CO)_{17}(\mu_4$ - | S) <sub>2</sub> (5)      |
| R 11        | I-CII 1.9      | 34 (1) <b>R</b> 1                                                                  | 15-C51 1.91                 | (1)                      |
| Ru          | I-C12 1.9      | 35 (1) R1                                                                          | 15-S1 2.40                  | 8 (3)                    |
| Ru          | 1-S1 24        | 155 (3) Pi                                                                         | $15 - R_{11}6$ 2.40         | 5(2)                     |
| D II        | $1-S^{2}$      | L74 (3) D:                                                                         | 16-C61 1.86                 | (2)                      |
| D           | 1_Ru3 21       | 79(1) Di                                                                           | 16-C62 1.80                 | (2)                      |
|             | 1Du? 2         | 17(1) <b>K</b>                                                                     | 10 002 1.00                 | (2)                      |
|             | 1 Ruz 2.3      | ער (בי                                         | 10 CUJ 2.00                 | (4)                      |
| ĸu          | 1 - RUS 2.5    | $V_{20}(1) = R(1)$                                                                 | 10-32 2.40<br>X E1 2.40     | 1 (3)                    |
| KU.         | i−ku4 2.5      | 720(1) KL                                                                          | ມບ~ອ∔ 2.48                  | 4 (3)                    |

| parameters are         | listed in Table V.  | Intramolecular bond dis   | stances |
|------------------------|---------------------|---------------------------|---------|
| and angles are         | listed in Tables V  | I and VII, respectively.  | Com-    |
| pound $\hat{6}$ is bot | h isomorphous and   | isostructural with its o  | smium   |
| homologue.14           | The cluster consist | ts of five ruthenium ator | ms and  |

O11-C11

O12-C12

O21-C21

O22-C22

O31-C31

O32-C32

O33-C33

O34-C34

041 - C41

O42-C42

O43-C43

O51-C51

O52-C52

O53-C53

O61-C61

O62-C62

O63-C63

Ru2...C63

1.16(2)

1.15(1)

1.19(2)

1.14(2)

1.15(2)

1.15(2)

1.13(1)

1.17(2)

1.15(2)

1.17 (2)

1.17(2)

1.13(2)

1.13(2)

1.14(2)

1.17 (2)

1.15 (2)

1.12(2)

2.49 (2)

Ru2-C21

Ru2-C22

Ru2-S1

Ru2-S2

Ru2-Ru3

Ru2-Ru6

Ru3-C34

Ru3-C32

Ru3-C33

Ru3-C31

Ru4-C43

Ru4-C42

Ru4~C41

Ru4-S2

Ru4-Ru5

Ru4-Ru6

Ru5-C53

Ru5-C52

1.83(2)

1.86(1)

2.409 (3)

2.415 (3)

2.738 (1)

2.850(1)

1.89(1)

1.89(1)

1.95 (1)

1.95 (1)

1.83(2)

1.85 (1)

1.89(2)

2.413 (3)

2.816 (2)

2.940 (2)

1.86(1)

1.86(2)

 <sup>(11) (</sup>a) Vahrenkamp, H.; Wolters, D. J. Organomet. Chem. 1982, 224, C17.
 (b) Jaeger, T.; Aime, S.; Vahrenkamp, H. Organometallics 1986, 5, 245.

<sup>(12)</sup> Cotton, F. A. Prog. Inorg. Chem. 1976, 21, 1.
(13) (a) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. (b) McPartlin,

M.; Mingos, D. M. P. Polyhedron 1984, 3, 1321. (c) Teo, B. K. Inorg. Chem. 1984, 23, 1257, 1251.

**Table VII.** Selected Intramolecular Bond Angles (deg) for  $Ru_6(CO)_{17}(\mu_4-S)_2$  (5)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - /        |                                                                                                     |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|----------------------|
| C11-Ru1-Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86.2 (4)   | C53-Ru5-Ru1                                                                                         | 91.6 (4)             |
| C11-Rn1-Rn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1240(4)    | C53-Ru5-Ru6                                                                                         | 146.9 (4)            |
| C11-Ru1-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.6 (4)  | C52-Ru5-Ru4                                                                                         | 93.8 (5)             |
| C11-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88 8 (4)   | C52-Ru5-Ru1                                                                                         | 1541(5)              |
| $C_{12} = D_{11} = D_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.6 (4)   | C52 Ru5 Ru1                                                                                         | 88.0 (5)             |
| C12 Rul Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1260(4)    | C52-Ru3-Ru0                                                                                         | 1760(3)              |
| C12-Rul-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0(4)   | C51-Ru5-Ru4                                                                                         | 1150(4)              |
| CI2-Rui-Rus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.4 (4)   |                                                                                                     | 115.9 (4)            |
| C12-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.3 (4)  | CSI-Rus-Rub                                                                                         | 120.0 (4)            |
| S1-Ru1-Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.12 (8)  | S1-Ru5-Ru4                                                                                          | 95.80 (8)            |
| S1-Ru1-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.43 (8)  | S1–Ru5–Ru1                                                                                          | 53.84 (7)            |
| S1-Ru1-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.37 (7)  | S1-Ru5-Ru6                                                                                          | 54.16 (8)            |
| S1-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.99 (8)  | Ru4–Ru5–Ru1                                                                                         | 61.36 (3)            |
| S2-Ru1-Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.24 (8)  | Ru4-Ru5-Ru6                                                                                         | 61.33 (4)            |
| S2-Ru1-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.45 (8)  | Ru1-Ru5-Ru6                                                                                         | 73.87 (3)            |
| S2-Ru1-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.83 (8)  | C61-Ru6-Ru2                                                                                         | 129.0 (5)            |
| S2-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.26 (8)  | C61-Ru6-Ru4                                                                                         | 80.0 (5)             |
| $\mathbf{D}_{11}$ $\mathbf{D}$ | 57.40 (3)  | $C61 \sim Ru6 - Ru5$                                                                                | 120.9 (5)            |
| $R_{u3} R_{u1} R_{u2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14254(4)   | C62 = Ru6 = Ru2                                                                                     | 120.9(5)<br>127.8(5) |
| Ruj-Ruj-Ruj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142.34(7)  | C62 - Ru0 - Ru2                                                                                     | 127.0(5)             |
| Rus-Rul-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143.73(3)  | C62-Ru6-Ru4                                                                                         | 123.2(3)             |
| Ru2-Ru1-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.46 (4)  |                                                                                                     | 82.0 (5)             |
| Ru2-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.45 (4)  | C63-Ru6-Ru2                                                                                         | 58.6 (4)             |
| Ru5-Ru1-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.57 (3)  | C63-Ru6-Ru4                                                                                         | 145.6 (4)            |
| C21–Ru2–Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.4 (5)   | C63-Ru6-Ru5                                                                                         | 143.8 (4)            |
| C21-Ru2-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.7 (5)  | S2-Ru6-Ru2                                                                                          | 53.45 (8)            |
| C21-Ru2-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.3 (5)  | S2-Ru6-Ru4                                                                                          | 52.12 (8)            |
| C22-Ru2-Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.6 (4)   | S2-Ru6-Ru5                                                                                          | 91.36 (8)            |
| C22-Ru2-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.4(4)   | S1-Ru6-Ru2                                                                                          | 53.16 (7)            |
| C22Ru2Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127.3 (4)  | S1-Ru6-Ru4                                                                                          | 91.11 (7)            |
| S1-Ru2-Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.12 (8)  | S1-Ru6-Ru5                                                                                          | 51.81 (7)            |
| S1-Ru2-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.61 (8)  | Ru2-Ru6-Ru4                                                                                         | 98.67 (4)            |
| S1_Ru2_Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.88 (7)  | Ru2 - Ru6 - Ru5                                                                                     | 98 37 (4)            |
| $S_1 = R_{12} = R_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04.57(8)   | $\mathbf{D}_{114}$ $\mathbf{D}_{116}$ $\mathbf{D}_{115}$                                            | 57 16 (3)            |
| $S_2 = Ru_2 = Ru_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 14 (0)  | $\mathbf{R}_{\mathbf{u}} = \mathbf{R}_{\mathbf{u}} \mathbf{C}_{\mathbf{u}} \mathbf{R}_{\mathbf{u}}$ | 1212(1)              |
| 52-Ru2-Ru0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.14 (8)  | Ru5-51-Ru2                                                                                          | 131.2(1)             |
| S2-Ru2-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.32 (8)  |                                                                                                     | 73.79 (9)            |
| Ru3-Ru2-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.11 (5) | RUS-SI-RUO                                                                                          | 74.02 (9)            |
| Ru3-Ru2-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.78 (3)  | Ru2-SI-Rul                                                                                          | 73.7 (1)             |
| Ru6–Ru2–Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.34 (4)  | Ru2-S1-Ru6                                                                                          | 71.2 (1)             |
| C34-Ru3-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.3 (4)  | Ru1-S1-Ru6                                                                                          | 91.1 (1)             |
| C34Ru3Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 167.1 (4)  | Ru4–S2–Ru2                                                                                          | 130.9 (1)            |
| C32-Ru3-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161.5 (4)  | Ru4–S2–Ru6                                                                                          | 74.1 (1)             |
| C32-Ru3-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97,7 (4)   | Ru4–S2–Ru1                                                                                          | 73.6 (1)             |
| C33-Ru3-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87.5 (4)   | Ru2-S2-Ru6                                                                                          | 71.42 (9)            |
| C33-Ru3-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.7 (4)   | Ru2-S2-Ru1                                                                                          | 73.23 (9)            |
| C31-Ru3-Ru2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.6 (4)   | Ru6-S2-Ru1                                                                                          | 91.0 (Ì)             |
| $C_{31}$ -Ru <sub>3</sub> -Ru <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.2 (4)   | 011-C11-Ru1                                                                                         | 179 (1)              |
| Ru2-Ru3-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.82 (3)  | 012 - C12 - Ru1                                                                                     | 179 (1)              |
| $C_{43}$ -Ru $4$ -Ru $5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 961(5)     | $O_{21} - C_{21} - R_{11}^{21}$                                                                     | 175 (1)              |
| C43 - Ru4 - Ru3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.0 (5)   | $O_{21} = C_{21} = R_{11}^{22}$                                                                     | 178 (1)              |
| C43-Ru4-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1522(5)    | 022-C22-Ru2                                                                                         | 173(1)               |
| C43-RU4-RU6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152.2(3)   | $O_{22} C_{22} P_{\mu 2}$                                                                           | 177(1)               |
| C42-Ru4-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.9 (4)   | 032-C32-Ru3                                                                                         | 177(1)               |
| C42-Ru4-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 144.2 (5)  | 033-C33-Ru3                                                                                         | 1// (1)              |
| C42–Ru4–Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.7 (4)  | O34-C34-Ru3                                                                                         | 177 (1)              |
| C41-Ru4-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170.5 (5)  | O41-C41-Ru4                                                                                         | 176 (1)              |
| C41-Ru4-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124.6 (5)  | O42-C42-Ru4                                                                                         | 174 (1)              |
| C41-Ru4-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.4 (5)  | O43-C43-Ru4                                                                                         | 176 (1)              |
| S2-Ru4-Ru5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.72 (8)  | O51-C51-Ru5                                                                                         | 178 (1)              |
| S2-Ru4-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.16 (8)  | O52C52Ru5                                                                                           | 179 (1)              |
| S2-Ru4-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.79 (8)  | O53C53Ru5                                                                                           | 178 (1)              |
| Ru5-Ru4-Ru1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.07 (4)  | O61-C61-Ru6                                                                                         | 179 (Ì)              |
| Ru5-Ru4-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.51 (4)  | O62-C62-Ru6                                                                                         | 178 (1)              |
| Ru1-Ru4-Ru6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.83 (4)  | 063-C63-Ru6                                                                                         | 154 (1)              |
| C53-Ru5-Ru4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.6 (4)   | 005 005 1040                                                                                        |                      |
| ILET ILET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.0177    |                                                                                                     |                      |

two sulfido ligands arranged in the form of a pentagonal bipyramid. An Ru(CO)<sub>4</sub> group bridges an apical-equatorial edge, Ru1-Ru2 of the cluster. The apical-equatorial metal-metal and metal-sulfur bond distances are longer than the equatorialequatorial metal-metal and metal-sulfur distances. Application of the EAN rule would suggest that the Ru2-Ru6 bond is a donor-acceptor metal-metal bond, Ru6-Ru2, and as might be expected, this bond contains an appropriately positioned semibridging carbonyl ligand: Ru2--C63 = 2.49 (2) Å, Ru6-C63-O63 = 154 (1)°.<sup>12</sup> The principal difference between 5 and the osmium

(14) Adams, R. D.; Horvath, I. T.; Yang, L. W. J. Am. Chem. Soc. 1983, 105, 1533.

**Table VIII.** Positional Parameters and B(eq) for  $Ru_7(CO)_{20}(\mu_4$ -S) (6)

| • •                  |                          |                           |                           |                    |
|----------------------|--------------------------|---------------------------|---------------------------|--------------------|
| atom                 | x                        | у                         | z                         | $B(eq), Å^2$       |
| Ru1                  | 1.94592 (14)             | 1.54450 (11)              | 1.419300 (71)             | 3.11 (7)           |
| Ru2                  | 1.73897 (13)             | 1.437688 (96)             | 1.387632 (70)             | 2.79 (7)           |
| Ru3                  | 1.88802 (15)             | 1.38256 (11)              | 1.484947 (72)             | 3.52 (7)           |
| Ru4                  | 1.85015 (15)             | 1.72970 (10)              | 1.400591 (72)             | 3.28 (7)           |
| Ru5                  | 1.96708 (15)             | 1.64456 (11)              | 1.298636 (74)             | 3.48 (7)           |
| Ru6                  | 1.71759 (14)             | 1.606542 (97)             | 1.315185 (64)             | 2.59 (6)           |
| Ru7                  | 1.54379 (15)             | 1.46940 (12)              | 1.311049 (79)             | 3.69 (8)           |
| S1                   | 1.88087 (43)             | 1.49273 (31)              | 1.31356 (22)              | 3.1 (2)            |
| <b>S</b> 2           | 1.73754 (41)             | 1.59254 (31)              | 1.43007 (20)              | 2.8 (2)            |
| <b>O</b> 11          | 2.0258 (18)              | 1.6344 (13)               | 1.54024 (88)              | 8.0 (5)            |
| O12                  | 2.1947 (16)              | 1.4749 (12)               | 1.39585 (84)              | 7.1 (4)            |
| O21                  | 1.7615 (14)              | 1.2483 (11)               | 1.32886 (76)              | 6.2 (4)            |
| O22                  | 1.5577 (16)              | 1.3671 (12)               | 1.48067 (79)              | 6.7 (4)            |
| O31                  | 2.0326 (15)              | 1.2792 (11)               | 1.38401 (75)              | 6.3 (4)            |
| O32                  | 1.7535 (17)              | 1.5120 (13)               | 1.57525 (83)              | 7.5 (4)            |
| O33                  | 1.7775 (20)              | 1.2040 (16)               | 1.5369 (10)               | 9.9 (6)            |
| O34                  | 2.0986 (19)              | 1.3810 (15)               | 1.57103 (98)              | 9.5 (6)            |
| <b>O</b> 41          | 2.0805 (16)              | 1.8364 (12)               | 1.41008 (88)              | 7.5 (5)            |
| O42                  | 1.7647 (19)              | 1.7923 (14)               | 1.5302 (10)               | 8.7 (5)            |
| O43                  | 1.7251 (17)              | 1.8938 (13)               | 1.34202 (83)              | 7.7 (5)            |
| O51                  | 1.9193 (15)              | 1.8356 (13)               | 1.24565 (82)              | 7.0 (4)            |
| O52                  | 2.0435 (18)              | 1.5658 (13)               | 1.17143 (89)              | 8.4 (5)            |
| 053                  | 2.2224 (16)              | 1.6778 (12)               | 1.32883 (80)              | 6.7 (4)            |
| O61                  | 1.7248 (14)              | 1.6219 (11)               | 1.17277 (75)              | 6.0 (4)            |
| O62                  | 1.5193 (14)              | 1.7481 (11)               | 1.31947 (77)              | 6.2 (4)            |
| 071                  | 1.6924 (13)              | 1.3890 (11)               | 1.20109 (71)              | 5.6 (3)            |
| 072                  | 1.3829 (20)              | 1.5722 (15)               | 1.2208 (10)               | 9.7 (6)            |
| 073                  | 1.4364 (15)              | 1.5717 (11)               | 1.42413 (74)              | 6.2 (4)            |
| 074                  | 1.3827 (22)              | 1.3027 (17)               | 1.3251 (12)               | 11.3 (7)           |
| CII                  | 1.9947 (22)              | 1.5972 (18)               | 1.4901 (12)               | 6.2 (6)            |
| C12                  | 2.0986 (21)              | 1.5018 (16)               | 1.4043 (11)               | 4.9 (5)            |
| C21                  | 1.7486 (19)              | 1.3208 (15)               | 1.351/2 (98)              | 4.3 (4)            |
| C22                  | 1.6273 (21)              | 1.3973 (16)               | 1.4445 (10)               | 5.1(5)             |
| C31                  | 1.9/80 (20)              | 1.3195 (15)               | 1.4206 (10)               | 4.5 (5)            |
| C32                  | 1.8053 (20)              | 1.46/4 (16)               | 1.5389 (10)               | 4.9 (5)            |
| C33                  | 1.8200(24)               | 1.2/30 (20)               | 1.5104 (15)               | 0.7(0)             |
| C34                  | 2.0168 (25)              | 1.3827(19)<br>1.7014(15)  | 1.5598 (12)               | 0.0 (0)            |
| C41                  | 1.9929 (21)              | 1.7914(15)<br>1.7711(21)  | 1.4042(11)<br>1.4019(14)  | 3.0(3)             |
| C42                  | 1.8013(20)<br>1.7724(21) | 1.7711(21)<br>1.9212(16)  | 1.4010 (14)               | 7.3 (7)<br>5 2 (5) |
| C43                  | 1.7734(21)<br>1.0205(21) | 1.0313 (10)               | 1.3004(10)                | 5.2 (5)            |
| C51                  | 1.9393(21)               | 1.7009 (10)               | 1.2007(11)<br>1.2000(12)  | 5.2 (5)            |
| C52                  | 2.0108(22)               | 1.3737(10)<br>1.6667(16)  | 1.2200(12)<br>1.3160(11)  | 5.3(5)             |
| C55                  | 2.1233(22)               | 1.0007(10)                | 1.3107 (11)               | 3.3(3)             |
| C61                  | 1.7227 (10)              | 1 6020 (14)               | 1 31728 (90)              | 30(4)              |
| C71                  | 1.53537 (10)             | 1.0525(17)<br>1 4173 (15) | 1 24293 (98)              | 3.5(-)             |
| C72                  | 1 / 201 (22)             | 1 5309 (18)               | 1.27293(90)<br>1.2559(12) | 64(6)              |
| C73                  | 1.4391(23)               | 1 5323 (14)               | 1 38749 (94)              | 4 2 (4)            |
| C74                  | 1.4422 (28)              | 1.3680 (21)               | 1.3197 (14)               | 8.0 (7)            |
| $\sim$ $\sim$ $\sim$ |                          |                           |                           | ~ ~ ~ ~ /          |

homologue is that, except for one bond (Ru1-Ru5) that is identical in length with that in the osmium compound, all the metal-metal bonds in 5 are shorter, 0.01-0.05 Å, than those in the osmium compound. Compound 5 contains a total of 94 valence electrons and obeys both the EAN rule and the delocalized bonding theories.<sup>13</sup>

Structure of  $\operatorname{Ru}_7(\operatorname{CO})_{20}(\mu_4 \cdot \operatorname{S})_2$  (6). An ORTEP diagram of the molecular structure of 6 is shown in Figure 3. Final positional parameters are listed in Table VIII. Intramolecular bond distances and angles are listed in Tables IX and X, respectively. Compound 6, like 5, is isomorphous and isostructural with its osmium homologue. The structure of  $\operatorname{Os}_7(\operatorname{CO})_{20}(\mu_4 \cdot \operatorname{S})_2$  has been reported.<sup>15</sup> The cluster of 6 is very similar to that of 5 and consists of a pentagonal-bipyramidal cluster of five ruthenium atoms and two sulfido ligands. Ru(CO)<sub>4</sub> groups bridge the Ru1-Ru2 and Ru2-Ru6 apical-equatorial edges of the cluster. The principal difference between 6 and the osmium homologue is that all the metal-metal bonds in 6 are shorter, 0.01-0.04 Å, than those in the osmium compound. All the metal atoms in 6 obey the EAN rule. Compound 6 with 108 valence electrons also adheres to the

 <sup>(15)</sup> Adams, R. D.; Horvath, I. T.; Mathur, P.; Segmuller, B. E.; Yang, L. W. Organometallics 1983, 2, 1078.

**Table IX.** Intramolecular Distances (Å) for  $Ru_7(CO)_{20}(\mu_4-S)_2$  (6)

| Ru1-C11       | 1.77 (3)  | Ru6-C62 | 1.84 (2)  |
|---------------|-----------|---------|-----------|
| Ru1-C12       | 1.85 (2)  | Ru6-C61 | 1.86 (2)  |
| Ru1-S1        | 2.449 (5) | Ru6–S2  | 2.453 (5) |
| Ru1-S2        | 2.473 (5) | Ru6–S1  | 2.456 (5) |
| Ru1-Ru3       | 2.782 (2) | Ru6–Ru7 | 2.770 (2) |
| Ru1-Ru2       | 2.862 (2) | Ru7C74  | 1.85 (3)  |
| Ru1Ru4        | 2.889 (2) | Ru7C72  | 1.88 (3)  |
| Ru1–Ru5       | 2.943 (2) | Ru7-C73 | 1.90 (2)  |
| Ru2-C22       | 1.83 (2)  | Ru7-C71 | 1.96 (2)  |
| Ru2-C21       | 1.84 (2)  | 011-C11 | 1.24 (3)  |
| Ru2–S2        | 2.373 (5) | O12-C12 | 1.16 (2)  |
| Ru2–S1        | 2.393 (5) | O21–C21 | 1.16 (2)  |
| Ru2–Ru7       | 2.765 (2) | O22C22  | 1.18 (2)  |
| Ru2-Ru3       | 2.772 (2) | O31-C31 | 1.15 (2)  |
| Ru2–Ru6       | 2.875 (2) | O32–C32 | 1.16 (2)  |
| Ru3–C34       | 1.86 (3)  | O33-C33 | 1.18 (3)  |
| Ru3–C33       | 1.87 (3)  | O34-C34 | 1.13 (3)  |
| Ru3–C32       | 1.91 (2)  | O41C41  | 1.18 (2)  |
| Ru3-C31       | 1.92 (2)  | O42-C42 | 1.15 (3)  |
| Ru4–C41       | 1.83 (2)  | O43-C43 | 1.17 (2)  |
| Ru4–C43       | 1.84 (2)  | O51-C51 | 1.18 (2)  |
| Ru4-C42       | 1.90 (3)  | O52C52  | 1.17 (3)  |
| <b>Ru4S</b> 1 | 2.418 (5) | O53-C53 | 1.15 (3)  |
| Ru4-Ru5       | 2.809 (2) | O61-C61 | 1.17 (2)  |
| Ru4–Ru6       | 2.934 (2) | O62-C62 | 1.17 (2)  |
| Ru5-C53       | 1.82 (2)  | O71-C71 | 1.14 (2)  |
| Ru5-C51       | 1.82 (2)  | O72–C72 | 1.14 (3)  |
| Ru5-C52       | 1.88 (3)  | O73-C73 | 1.16 (2)  |
| Ru5–S2        | 2.401 (5) | O74–C74 | 1.16 (3)  |
| Ru5–Ru6       | 2.875 (2) |         |           |

delocalized cluster bonding theories.13

### Discussion

In this report we have described the synthesis and characterization of the new higher nuclearity disulfido ruthenium carbonyl clusters 4-6 as well as the previously known cluster 3 from condensation reactions of the triruthenium cluster compounds 1 and

**Table X.** Selected Intramolecular Bond Angles (deg) for  $Ru_7(CO)_{20}(\mu_4-S)_2$  (6)

|             |            | 2000 0000 (000) 000 | /(/20(P    | 4 = )2 (=)  |            |             |           |
|-------------|------------|---------------------|------------|-------------|------------|-------------|-----------|
| C11-Ru1-Ru3 | 90.2 (8)   | S1-Ru2-Ru6          | 54.6 (1)   | C52-Ru5-Ru4 | 166.1 (7)  | C73-Ru7-Ru6 | 84.6 (6)  |
| C11-Ru1-Ru2 | 132.8 (8)  | Ru7–Ru2–Ru3         | 164.27 (8) | C52-Ru5-Ru6 | 106.8 (8)  | C71-Ru7-Ru2 | 86.0 (6)  |
| C11-Ru1-Ru4 | 80.8 (8)   | Ru7-Ru2-Ru1         | 133.91 (7) | C52-Ru5-Ru1 | 127.1 (8)  | C71-Ru7-Ru6 | 84.4 (6)  |
| C11-Ru1-Ru5 | 120.4 (8)  | Ru7-Ru2-Ru6         | 58.78 (5)  | S2-Ru5-Ru4  | 95.9 (1)   | Ru2-Ru7-Ru6 | 62.59 (5) |
| C12-Ru1-Ru3 | 91.6 (7)   | Ru3-Ru2-Ru1         | 59.16 (6)  | S2-Ru5-Ru6  | 54.5 (1)   | Ru2-S1-Ru4  | 130.7 (2) |
| C12-Ru1-Ru2 | 122.4 (7)  | Ru3-Ru2-Ru6         | 133.47 (7) | S2-Ru5-Ru1  | 54.0 (1)   | Ru2-S1-Ru1  | 72.4 (1)  |
| C12-Ru1-Ru4 | 128.7 (7)  | Ru1-Ru2-Ru6         | 75.15 (5)  | Ru4–Ru5–Ru6 | 62.15 (5)  | Ru2-S1-Ru6  | 72.7 (1)  |
| C12-Ru1-Ru5 | 86.3 (7)   | C34-Ru3-Ru2         | 159.5 (8)  | Ru4–Ru5–Ru1 | 60.25 (6)  | Ru4-S1-Ru1  | 72.8 (1)  |
| S1-Ru1-Ru3  | 88.0 (1)   | C34-Ru3-Ru1         | 97.6 (8)   | Ru6-Ru5-Ru1 | 73.92 (5)  | Ru4–S1–Ru6  | 74.0 (1)  |
| S1-Ru1-Ru2  | 52.9 (1)   | C33-Ru3-Ru2         | 105.0 (8)  | C62-Ru6-Ru7 | 87.4 (6)   | Ru1-S1-Ru6  | 91.0 (2)  |
| S1-Ru1-Ru4  | 53.1 (1)   | C33-Ru3-Ru1         | 167.0 (8)  | C62-Ru6-Ru5 | 126.7 (6)  | Ru2-S2-Ru5  | 131.2 (2) |
| S1-Ru1-Ru5  | 91.2 (1)   | C32-Ru3-Ru2         | 88.4 (7)   | C62-Ru6-Ru2 | 127.8 (6)  | Ru2–S2–Ru6  | 73.1 (1)  |
| S2-Ru1-Ru3  | 97.8 (1)   | C32-Ru3-Ru1         | 83.3 (7)   | C62–Ru6–Ru4 | 87.6 (6)   | Ru2-S2-Ru1  | 72.4 (1)  |
| S2-Ru1-Ru2  | 52.2 (1)   | C31-Ru3-Ru2         | 85.5 (6)   | C61-Ru6-Ru7 | 92.2 (6)   | Ru5–S2–Ru6  | 72.6 (1)  |
| S2-Ru1-Ru4  | 92.3 (1)   | C31-Ru3-Ru1         | 85.0 (6)   | C61-Ru6-Ru5 | 80.5 (6)   | Ru5-S2-Ru1  | 74.3 (1)  |
| S2-Ru1-Ru5  | 51.7 (1)   | Ru2–Ru3–Rul         | 62.02 (5)  | C61-Ru6-Ru2 | 126.0 (6)  | Ru6-S2-Ru1  | 90.5 (2)  |
| Ru3-Ru1-Ru2 | 58.82 (5)  | C41-Ru4-Ru5         | 80.4 (7)   | C61-Ru6-Ru4 | 124.0 (6)  | 011-C11-Rut | 178 (2)   |
| Ru3-Ru1-Ru4 | 138.33 (8) | C41-Ru4-Ru1         | 96.4 (7)   | S2-Ru6-Ru7  | 93.1 (1)   | O12-C12-Ru1 | 179 (2)   |
| Ru3-Ru1-Ru5 | 149.32 (8) | C41-Ru4-Ru6         | 139.4 (7)  | S2-Ru6-Ru5  | 52.8 (1)   | O21-C21-Ru2 | 176 (2)   |
| Ru2-Ru1-Ru4 | 98.99 (7)  | C43-Ru4-Ru5         | 105.0 (7)  | S2-Ru6-Ru2  | 52.1 (1)   | O22-C22-Ru2 | 177 (2)   |
| Ru2-Ru1-Ru5 | 96.98 (6)  | C43-Ru4-Ru1         | 162.6 (7)  | S2-Ru6-Ru4  | 91.7 (1)   | O31-C31-Ru3 | 177 (2)   |
| Ru4–Ru1–Ru5 | 57.56 (5)  | C43–Ru4–Ru6         | 89.7 (7)   | S1-Ru6-Ru7  | 92.2 (1)   | O32-C32-Ru3 | 174 (2)   |
| C22-Ru2-Ru7 | 84.1 (7)   | C42-Ru4-Ru5         | 165.3 (9)  | S1-Ru6-Ru5  | 92.7 (1)   | O33-C33-Ru3 | 179 (3)   |
| C22-Ru2-Ru3 | 80.4 (7)   | C42-Ru4-Ru1         | 105.6 (9)  | S1-Ru6-Ru2  | 52.6 (1)   | O34-C34-Ru3 | 177 (2)   |
| C22-Ru2-Ru1 | 124.7 (7)  | C42-Ru4-Ru6         | 126.9 (9)  | S1-Ru6-Ru4  | 52.4 (1)   | O41-C41-Ru4 | 174 (2)   |
| C22-Ru2-Ru6 | 124.1 (7)  | S1-Ru4-Ru5          | 95.2 (1)   | Ru7–Ru6–Ru5 | 144.76 (7) | O42C42-Ru4  | 175 (3)   |
| C21-Ru2-Ru7 | 87.3 (7)   | S1-Ru4-Ru1          | 54.1 (1)   | Ru7-Ru6-Ru2 | 58.63 (5)  | O43-C43-Ru4 | 177 (2)   |
| C21-Ru2-Ru3 | 90.8 (7)   | S1-Ru4-Ru6          | 53.6 (1)   | Ru7–Ru6–Ru4 | 143.42 (7) | O51-C51-Ru5 | 179 (2)   |
| C21-Ru2-Ru1 | 122.4 (7)  | Ru5-Ru4-Ru1         | 62.19 (6)  | Ru5–Ru6–Ru2 | 98.23 (6)  | O52–C52–Ru5 | 176 (2)   |
| C21-Ru2-Ru6 | 123.2 (6)  | Ru5–Ru4–Ru6         | 60.03 (6)  | Ru5–Ru6–Ru4 | 57.82 (5)  | O53-C53-Ru5 | 178 (2)   |
| S2-Ru2-Ru7  | 95.1 (1)   | Ru1–Ru4–Ru6         | 73.85 (6)  | Ru2–Ru6–Ru4 | 97.64 (6)  | O61-C61-Ru6 | 179 (2)   |
| S2-Ru2-Ru3  | 100.5 (1)  | C53-Ru5-Ru4         | 102.1 (8)  | C74–Ru7–Ru2 | 107 (1)    | O62–C62–Ru6 | 179 (2)   |
| S2-Ru2-Ru1  | 55.4 (1)   | C53-Ru5-Ru6         | 160.7 (8)  | C74-Ru7-Ru6 | 170 (1)    | 071-C71-Ru7 | 176 (2)   |
| S2-Ru2-Ru6  | 54.7 (1)   | C53-Ru5-Ru1         | 88.7 (8)   | C72-Ru7-Ru2 | 159.9 (8)  | O72-C72-Ru7 | 175 (2)   |
| S1-Ru2-Ru7  | 93.6 (1)   | C51-Ru5-Ru4         | 79.1 (7)   | C72-Ru7-Ru6 | 97.4 (8)   | O73-C73-Ru7 | 177 (2)   |
| S1-Ru2-Ru3  | 89.3 (1)   | C51-Ru5-Ru6         | 93.0 (7)   | C73-Ru7-Ru2 | 84.8 (6)   | 074–C74–Ru7 | 177 (3)   |
| Sl-Ru2-Rul  | 54.7 (1)   | C51-Ru5-Ru1         | 138.9 (7)  |             |            |             |           |



Figure 3. ORTEP diagram of  $Ru_7(CO)_{20}(\mu_4-S)_2$  (6) showing 50% probability thermal ellipsoids.

2; see Scheme I. The series 3-6 differ in sequence by the amount of one ruthenium atom. It seems most likely that they are formed by the sequential addition of mononuclear ruthenium carbonyl fragments formed in situ to each of the clusters 2-4. The additions are difficult to control. The reactions give product mixtures, and the yields are not good. We have not been able to obtain 6 by addition of a mononuclear ruthenium fragment to 5. Likewise, we were unable to prepare the osmium homologue of 6 by addition of a mononuclear osmium fragment to the osmium homologue of 5. The formation of 6 apparently occurs by cluster growth a

stage prior to the formation of 5. Compound 5 was obtained by the thermal decarbonylation and condensation of 2 mol of 1.  $Os_6(CO)_{17}(\mu_4-S)_2$  was prepared in good yield by the photoinduced decarbonylation and condensation of 2 mol of  $Os_3(CO)_9(\mu_3$ -CO) $(\mu_3$ -S).<sup>16</sup> Interestingly, Os<sub>6</sub>(CO)<sub>17</sub> $(\mu_4$ -S)<sub>2</sub> can be decarbonylated to form the more highly condensed species  $Os_6(CO)_{16}$ - $(\mu_4$ -S) $(\mu_3$ -S).<sup>14</sup> We found no evidence for this reaction with 5. Instead, when compound 5 was heated, the cluster broke down and compound 3 was formed.

The greatest differences in structural chemistry between the disulfidoruthenium and the disulfidoosmium carbonyl cluster series lie in compounds 3 and 4.  $Os_4(CO)_{11}(\mu_4-S)_2$  has not yet been prepared.  $Os_4(CO)_{12}(\mu_3-S)_2$  is known, but it has a butterfly tetrahedral cluster of metal atoms.<sup>17</sup> Our efforts to decarbonylate  $Os_4(CO)_{12}(\mu_3-S)_2$  to form  $Os_4(CO)_{11}(\mu_4-S)_2$  have not been successful.18 Interestingly, we have been able to transform the butterfly clusters  $Os_4(CO)_{12}(\mu_3-S)(\mu_3-HC_2R)$  (R = Ph, CO<sub>2</sub>Me) into the square clusters  $Os_4(CO)_{11}(\mu_4-S)(\mu_4-HC_2R)$ .<sup>19</sup> To date,

there are no known examples of disulfidopentaosmium carbonyl clusters with which to compare to 4.

Another difference between the two series lies in their reactivities toward CO. The ruthenium clusters are readily degraded under 1 atm of CO to give either 3 as a precipitate or 2. The osmium compounds are much more resistant to degradation by CO. For example,  $Os_6(CO)_{16}(\mu_4-S)(\mu_3-S)$  does not react significantly when treated with CO at 165 atm/210 °C for 2 days. This difference in reactivity can probably be attributed to the greater strength of the Os-Os vs. the Ru-Ru bonds.<sup>20</sup> Most CO addition reactions induce metal-metal bond cleavages.

Acknowledgment. The research was supported by the National Science Foundation under Grant No. CHE-8612862.

Registry No. 1, 105121-22-0; 2, 72282-38-3; 3, 105121-25-3; 4, 109433-55-8; **5**, 109433-54-7; **6**, 109466-69-5; Ru<sub>3</sub>(CO)<sub>12</sub>, 15243-33-1; Ru(CO)<sub>5</sub>, 16406-48-7.

Supplementary Material Available: For compounds 4-6, tables of complete bond angles and of anisotropic thermal parameters (U values) (15 pages); listings of structure factor amplitudes (54 pages). Ordering information is given on any current masthead page.

(20) Connor, J. A. In Transition Metal Clusters; Johnson, B. F. G., Ed.; Wiley: Chichester, England, 1980; Chapter 5.

Contribution from the Institute of Inorganic Chemistry, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland

## Cyclometalated Complexes of Platinum(II): Homoleptic Compounds with Aromatic C,N Ligands

## L. Chassot and A. von Zelewsky\*

#### Received September 12, 1986

The synthesis of the five new homoleptic bis(cyclometalated) Pt(II) complexes cis-Pt(Php2)<sub>2</sub> (II, C<sub>18</sub>H<sub>14</sub>N<sub>4</sub>Pt), cis-Pt(Thpy)<sub>2</sub> (III,  $C_{18}H_{12}N_2S_2Pt$ ,  $Pt(3-Thpy)_2$  (IV,  $C_{18}H_{12}N_2S_2Pt$ ),  $cis-Pt(Thpy-SiMe_3)_2$  (V,  $C_{24}H_{28}N_2S_2Si_2Pt$ ), and  $cis-Pt(Thpz)_2$  (VI,  $C_{14}H_{10}N_4S_2Pt$ ) from *trans*-PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub> and the lithiated ligands at low temperature (-78 °C) is described. All compounds are air-stable, soluble in many organic solvents, and photoreactive in solution under irradition with visible light. The strong low-energy bands in the electronic spectra in the range from 400 to 450 nm are assigned to metal to ligand charge-transfer (MLCT) transitions from a Pt(5d) orbital to an empty  $\pi^*$  orbital of the ligands. Most spectra show a weak absorption superimposed on the low-energy side of the strong MLCT band. This weak absorption is attributed to a singlet-triplet transition of the same type as the strong band. The complexes can be reduced electrochemically in reversible one-electron steps. Oxidation occurs also, but in a completely irreversible manner.

### Introduction

Cyclometalated complexes represent a link between classic, Werner-type coordination compounds and organometallic species.<sup>1</sup> We are exploring presently the possibility of synthesizing homoleptic complexes with C,N aromatic cycles of several transition metals.<sup>2</sup> Such species are promising candidates for interesting photochemical and photophysical properties.<sup>3</sup> The first example of a homoleptic bis complex with aromatic ligands of a d<sup>8</sup> metal was described recently.<sup>4</sup> In the present paper, we describe further examples in the series. The platinum(II) complexes I-VI are characterized by using several analytical methods.

All these compounds are air stable and they can be crystallized from several solvents. In some cases precautions, during the handling of solutions, against photoreactions have to be taken.

The synthesis, X-ray crystal structure, and several properties of I have already been published; some results have not yet been given, however. In this report I is included for the sake of completeness.



## **Experimental Section**

Measurements. Electronic spectra were recorded with a Perkin-Elmer 555 spectrophotometer. <sup>1</sup>H NMR spectra were collected with Varian T-60, Varian XL-300, and Bruker M-360 spectrometers. <sup>13</sup>C NMR spectra were obtained on Varian XL-300 and Bruker M-360 spectrometers at 75.5 and 90.6 MHz. Natural-abundance <sup>195</sup>Pt NMR spectra were obtained on a Bruker M-360 spectrometer with a wide-bore (20mm) probe at 70.07 MHz (external reference  $Pt(CN)_6^{2-}$  in H<sub>2</sub>O). Mass

<sup>(16)</sup> Adams, R. D.; Horvath, I. T.; Kim, H. S. Organometallics 1984, 3, 548.

Adams, R. D.; Yang, L. W. J. Am. Chem. Soc. 1983, 105, 235.
 Adams, R. D.; Wang, S., unpublished results.
 Adams, R. D.; Wang, S. J. Am. Chem. Soc. 1987, 109, 924.

Constable, E. C. Polyhedron 1984, 3, 1037. (1)

<sup>(2)</sup> (3)

Chassot, L Ph.D. Thesis University of Fribourg 1985. Maestri, M.; Sandrini, D.; Balzani, V.; Chassot, L.; Jolliet, Ph.; von Zelewsky, A. *Chem. Phys. Lett.* **1985**, *122*, 375. Bonafede, S.; Ciano, M.; Bolletta, F.; Balzani, V.; Chassot, L.; von Zelewsky, A. *J. Phys.* Chem. 1986, 90, 3836. Chassot, L.; von Zelewsky, A.; Sandrini, D.; Maestri, M.; Balzani, V. J. Am. Chem. Soc. 1986, 108, 6084.

Chassot, L.; Mueller, E.; von Zelewsky, A. Inorg. Chem. 1984, 23, 4249.